Translate

Thursday, June 26, 2014

Particle Charging Mechanisms

Particles are charged by negative gas ions moving toward the collection plate by one of these two mechanisms: field charging or diffusion charging. In field charging (the mechanism described above), particles capture negatively charged gas ions as the ions move toward the grounded collection plate. Diffusion charging, as its name implies, depends on the random motion of the gas ions to charge particles.


In field charging (Figure 1), as particles enter the electric field, they cause a local dislocation of the field. Negative gas ions traveling along the electric field lines collide with the suspended particles and impart a charge to them. The ions will continue to bombard a particle until the charge on that particle is sufficient to divert the electric lines away from it. This prevents new ions from colliding with the charged dust particle. When a particle no longer receives an ion charge, it is said to be saturated. Saturated charged particles then migrate to the collection electrode and are collected.

Diffusion charging is associated with the random Brownian motion of the negative gas ions. The random motion is related to the velocity of the gas ions due to thermal effects: the higher the temperature, the more movement. Negative gas ions collide with the particles because of their random thermal motion and impart a charge on the particles. Because the particles are very small (submicrometer), they do not cause the electric field to be dislocated, as in field charging. Thus, diffusion charging is the only mechanism by which these very small particles become charged. The charged particles then migrate to the collection electrode. Each of these two charging mechanisms occurs to some extent, with one dominating depending on particle size. Field charging dominates for particles with a diameter >1.0 micrometer because particles must be large enough to capture gas ions. Diffusion charging dominates for particles with a diameter less than 0.1 micrometer. A combination of these two charging mechanisms occurs for particles ranging between 0.2 and 1.0 micrometer in diameter. A third type of charging mechanism, which is responsible for very little particle charging is electron charging. With this type of charging, fast-moving free electrons that have not combined with gas ions hit the particle and impart a charge.


0 comments:

Post a Comment